Repository logo
 

Bayesian Combination for Inflation Forecasts: The Effects of a Prior Based on Central Banks’ Estimates

dc.audiencePolicymakerseng
dc.audienceResearcherseng
dc.audienceStudentseng
dc.audienceTeacherseng
dc.contributor.institucionBanco de la República - Colombiaspa
dc.coverage.ciudadBogotáspa
dc.creatorMelo-Velandia, Luis Fernandospa
dc.creatorLoaiza, Rubénspa
dc.creatorVillamizar-Villegas, Mauriciospa
dc.date.accessioned2019-05-29T21:20:42Zspa
dc.date.available2019-05-29T21:20:42Zspa
dc.date.created2014-11-20spa
dc.description.abstractTypically, central banks use a variety of individual models (or a combination of models) when forecasting inflation rates. Most of these require excessive amounts of data, time, and computational power; all of which are scarce when monetary authorities meet to decide over policy interventions. In this paper we use a rolling Bayesian combination technique that considers inflation estimates by the staff of the Central Bank of Colombia during 2002-2011 as prior information. Our results show that: 1) the accuracy of individual models is improved by using a Bayesian shrinkage methodology, and 2) priors consisting of staff's estimates outperform all other priors that comprise equal or zero-vector weights. Consequently, our model provides readily available forecasts that exceed all individual models in terms of forecasting accuracy at every evaluated horizon.eng
dc.format.extent20 páginas : gráficas, tablasspa
dc.format.mimetypePDFspa
dc.identifier.urihttp://repositorio.redinvestigadores.org/handle/Riec/16spa
dc.language.isoengeng
dc.relation.ispartofDocumentos de Trabajospa
dc.relation.numberNo. 8spa
dc.relation.repechttps://ideas.repec.org/p/rie/riecdt/8.htmlspa
dc.relation.urihttp://repositorio.banrep.gov.co/bitstream/handle/20.500.12134/6141/be_853.pdf?sequence=1&isAllowed=yspa
dc.rights.accessRightsOpen Accesseng
dc.rights.ccAtribucion-NoComercial-CompartirIgual CC BY-NC-SA 4.0spa
dc.rights.spaAcceso abiertospa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/eng
dc.subject.jelC22 - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion processeseng
dc.subject.jelC53 - Forecasting and Prediction Methods; Simulation Methodseng
dc.subject.jelC11 - Bayesian Analysis: Generaleng
dc.subject.jelE31 - Price Level; Inflation; Deflationeng
dc.subject.jelspaC11 - Análisis bayesiano: generalidadesspa
dc.subject.jelspaC22 - Modelos de series temporales; Regresiones cuantiles dinámicas; Modelos dinámicos de tratamiento; procesos de difusiónspa
dc.subject.jelspaC53 - Métodos de pronóstico y predicción; métodos de simulaciónspa
dc.subject.jelspaE31 - Nivel de precios; Inflación; Deflaciónspa
dc.subject.keywordBayesian shrinkageeng
dc.subject.keywordInflation forecast combinationeng
dc.subject.keywordInternal forecastseng
dc.subject.keywordRolling window estimationeng
dc.subject.lembTasas de inflación -- Pronósticos -- Modelosspa
dc.subject.lembBancos centrales -- Modelosspa
dc.subject.lembInflación -- Intervención del estado -- Colombia -- 2002-2011spa
dc.subject.lembAnálisis bayesianospa
dc.titleBayesian Combination for Inflation Forecasts: The Effects of a Prior Based on Central Banks’ Estimateseng
dc.typeWorking papereng
dc.type.hasversionPublished Versioneng
dc.type.spaDocumentos de Trabajospa

Files

License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
7.52 KB
Format:
Item-specific license agreed upon to submission
Description: